

Student Oriented Learning Centers: The Learning Enhancement Across Disciplines (LEAD) Program at the University of Missouri-Rolla (UMR)

www.campus.umr.edu/lead

Ronald Bieniek

Physics Department, University of Missouri-Rolla Director, Learning Enhancement Across Disciplines Program

<u>www.campus.umr.edu/lead</u> <u>bieniek@umr.edu</u>

Teaching and Technology Conference St. Louis (UMSL) 3 November 2006

Student Oriented Learning Centers:

The Learning Enhancement Across Disciplines (LEAD) Program at the University of Missouri-Rolla (UMR)

• Abstract

We describe a straight-forward method of implementing the Seven Principles of Good Practice in Undergraduate Education and empowering students through the formation of faculty-based learning centers for their courses by having office-hours in an open-environment. In effect, these form informal student learning communities designed to increase understanding of content, improve skills, and validate mastery. Over fifty faculty in twelve departments at the University of Missouri-Rolla, the state's premier technological research university, offer collaborative learning centers for twenty-eight courses from Spanish and Engineering Physics to Thermodynamics and Chemical Engineering Fluid Flow (see <u>www.campus.umr.edu/lead/assist</u>). Data indicates that typically 35-45 percent of the students in courses with learning centers attend the learning centers regularly for about 3 hours per week per course and that these students do significantly better in courses.

The Seven Principles are promoted by a symbiotic relationship between the divisions of:

• **Provost:** Learning Enhancement Across Disciplines (LEAD) Program

http://campus.umr.edu/lead

Course-based Learning Centers in academic departments Free scheduled tutoring in Student Learning Center Faculty development and dialog on engaged student learning

• Student Affairs: Academic Support Programs (ASP)

http://campus.umr.edu/learn Academic and Learning Resources Disability support services

Testing center

Residential Learning Centers (course review materials)

Seven Principles for Good Practice in Undergraduate Education – at UM-Rolla

www.campus.umr.edu/lead/7principles/SevenPrinciplesUMR.htm

- » Encourage student-faculty contact
- » Encourage cooperation among students
- » Encourage active learning

UMR

- » Give prompt, frequent, informative feedback
- » Emphasize time on task
- » Communicate high expectations
- » Respect & encompass diverse talents & learning styles

Learning Enhancement Across Disciplines (LEAD) Program

LEAD provides learning assistance to students for their success & retention

UMR

- LEAD employs 30-35 accomplished undergraduate Peer Learning Assistants (PLAs) who undergo extensive training
- Over 50 UMR faculty participate regularly each week in LEAD Learning Centers
- Implements the "Seven Principles of Good Practice in Undergraduate Education"
- Stresses student-centered learning, mastery of material, student responsibility and teamwork

Learning Enhancement Across Disciplines (LEAD) Program

LEAD Program Components

1. LEAD Tutoring

UMR

- » provided in 25 foundational courses
- » done by trained undergrad PLAs
- » ~175 student clients per week

2. LEAD Learning Centers

- » Collaborative learning with LEAD faculty on duty using modified Socratic techniques
- » From Spanish I and College Algebra to Fluid Mechanics and Intro Quantum Chem
- Approximately 40% of students in a course attend its learning center for ~3 hrs/wk
 ~700 students/week vote with their feet to find success through Learning Centers

LEAD Learning Center (LC) Characteristics

- Operate during fixed hours each week
- Staffed by

UMR

- » discipline-based faculty as office hours in an open environment
- » accomplished, trained undergraduate peer instructors
- Facilitate and project learning-centered education
 » more student-oriented, less teacher-centered
- Learning Centers directly promote ALL the
 - » Seven Principles for Good Practice in Undergraduate Education

The Beginnings

UMR

• The Physics Learning Center was established in 1997 for the course Engineering Physics I

(<u>www.campus.umr.edu/lead/lc/physics</u>)

The Physics Learning Center (PLC) – the Prototype LC www.campus.umr.edu/lead/lc/physics

for calculus-based *Engineering Physics I & II* (650 students/sem) & algebra-based *College Physics I or II* (25 students/semester)

Typical Physics Learning Center Instructors

Unposed photos of Cooperative Learning and Social Dynamics in the intro Physics, Math, Chemistry Learning Centers

~40% of Students Voluntarily Used the Physics Learning Center (Engr Phys I) (note DIP just before tests)

UMR

Impact of Physics Learning Center on Student Performance

Engineering Physics I for Fall 1999 (242 students)** % Attending PLC: 40% course GPA 2.9 % Non-attending PLC: 60% course GPA 2.3 increase of GPA 0.6 out of 4.0

Engineering Physics II for Fall 2005 (54 students in 2 rec secs)% Attending PLC:30%course GPA 3.2% Non-attending PLC:70%course GPA 2.3increase of GPA0.9 out of 4.0

**In Fall 1999, the students in Engr Phys I who regularly attended the Physics Learning Center had the same average performance expectation (ACT+high school rank) percentile as those who were non-attending ($82 \pm 1 \%$).

Data compiled by R. Bieniek & A. Pringle, UMR Physics

LEAD Learning Centers and LEAD Faculty Associates

Current LEAD Learning Centers (Fall 2006)

General Chem I	Data Structures I	Elementary Fluid Mech	
Intro Quantum Chem	Discrete Math (Comp Sci)	Water Resource Engr	
Engr Phys I	College Algebra Linear Systems Mec		
Engr Phys II	Calculus I with Analyt Geo	Thermal Analysis (Mech E)	
College Physics I	Calculus II with Analyt Geo	yt Geo Thermodynamics (Mech E)	
Chem E Materials Balances	Calculus I for Engineers	Dyanmics (Mech E)	
Chem E Fluid Flow	Calculus II for Engineers	Machine Dynamics (ME)	
Elec Engr Circuits I	Engr Mechanics-Statics Elementary Spani		
Digital Systems Design	Mechanics of Materials	Spanish Reading & Comp	
Intro Data Struct & Apps	Engineering Dynamics		

Grades in General Chemistry for Fall 2005 (compiled by K. Woelk, UMR Chemistry)

Calculus I for Engineers: Weekly Average LC Attendance (%) Fall 2005

Calculus I for Engineers: Weekly Average LC Attendance (%) Spring 2006

Learning Enhancement Across Disciplines (LEAD) Program

Increase

Growth of LEAD Tutoring

UMR

 Academic Year
 2002-03
 2005-06
 over 3 years

 # Client-hours
 1384
 1943
 40 %

Growth of LEAD Learning Centers

	<u>Fall 2001</u>	<u>Fall 2006</u>	<u>over 5 years</u>
# Learning Centers	8	29	260 %
# Departments	5	12	140 %
# LEAD Faculty	22	51	130 %

Data indicates that students who regularly attend Learning Centers do better in course grades

To have a successful Learning Center, faculty should:

- implement a course structure that provides frequent, prompt and *accurately* informative evaluations of students' level of mastery
- act as non-hovering guides who restrain themselves from becoming tutors or overly attentive adjusters
- promote and orchestrate an atmosphere of cooperative engagement and teamwork
- offer concentrated LC hours convenient for many students & stay during "duty" time – even if only a few students are there.

Establishing cooperative faculty-based Learning Centers in technical courses

• Summary:

UMR

- » Collaboration with individual faculty assists in the cultural change as UMR strives to move toward a learning-centered approach vs. teachingcentered approach to academic assistance.
- » Faculty generally need to be "cultivated" through personal contact to establish learning centers because quality of educational impact is too often only a small component of departmental reward structures. Those faculty can then act successful exemplars, and promote by example within departments.
- » Take advantage of the desire of individual faculty and departments to appear to be players in improving educational impact and retention.
- » Communication is critical, determining common goals and respecting differences in approach are necessary through continued dialog.
- » Pooled resources often are more effective than if those resources were to serve students as stand alone funds.

QUESTIONS??

Ronald Bieniek

Physics Department, University of Missouri-Rolla <u>bieniek@umr.edu</u> Director, Learning Enhancement Across Disciplines Program <u>www.campus.umr.edu/lead</u> and of New Faculty Programs <u>www.campus.umr.edu/newfac</u>

This talk is now posted at:

UMR

www.campus.umr.edu/physics/depart/profs/bieniek/files /TeachTechNov2006.ppt